Resumen
Rotavirus A (RVA) presenta asociaciones G-/P- comunes e inusuales. El reordenamiento entre cepas durante una coinfección constituye uno de sus mecanismos más importantes en la generación de diversidad genética. Durante el período 2017-2018, se detectaron dos asociaciones inusuales (G9P[4] y G8P[8]) por primera vez en Argentina. Se desconoce si representan nuevas introducciones o si son producto de un reordenamiento entre asociaciones comunes locales. Objetivo: Analizar las relaciones filogenéticas y evolutivas de G9P[4] y G8P[8] con respecto a las asociaciones comunes circulantes del mismo período. Materiales y métodos: Se incluyeron cepas de RVA representativas de asociaciones comunes (n=11) e inusuales (n=2), detectadas durante el período 2016-2018, en el marco de la vigilancia epidemiológica nacional. Partiendo de materia fecal, se realizó la extracción de ácidos nucleicos y se amplificaron y secuenciaron los 11 segmentos genómicos. Se determinaron las constelaciones genéticas, se construyeron árboles filogenéticos y se elaboraron matrices de distancia en los niveles nucleotídico y aminoacídico. Resultados: Las constelaciones obtenidas fueron G9P[4]-I2-R2-C2-M2-A2- N2-T2-E6-H2 y G8P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. La G8P[8] se relacionó en 10 segmentos con una G3P[8] que circuló en 2016. G9P[4] se relacionó en 6 genes con una G2P[4] que circuló en 2016, en 2 genes, con una G3P[8] del 2016 y en un gen, con una_ G2P[4] del 2017. Sin embargo, no se observaron fenómenos de reordenamiento en ninguno de los 11 segmentos. Conclusiones: Las cepas emergentes G9P[4] y G8P[8], detectadas en Argentina, son producto de una introducción en nuestro país.
Referencias
1. Organización Mundial de la Salud. Centro de prensa. Enfermedades diarreicas. 2009; nota descriptiva n º 330. [Acceso: 4 de junio de 2012]. Disponible en: http://www.who.int/mediacentre/factsheets/fs330/es/
2. Tate JE, Burton AH, Bosch I, Pinto C, Steele AD, Duque J, et al. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 2012;12(2):136-141, https://doi.org/10.1016/s1473-3099(11)70253-5
3. Ministerio de Salud de la Nación. Boletín Epidemiológico Anual 2010. Argentina, 2011. [Acceso: 4 de junio de 2012]. Disponible en http://msal.gov.ar/htm/site/sala_situacion/PANELES/bep-anual-2010/BEPANUAL_2010.pdf
4. Degiuseppe JI, Giovacchini C, Stupka JA; Red Nacional de Vigilancia de Gastroenteritis Virales. 2013. Rotavirus epidemiology and surveillance in Argentina: 2009 - 2011 Arch Arg Pediatr 2013;111(2):148-54, http://dx.doi.org/10.5546/aap.2013.148
5. Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination. Gastroenterology. 2009; 136(6):1939-51, https://doi.org/10.1053/j.gastro.2009.02.076
6. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K, Brister JR, et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol. 2011; 156(8):1397-413, https://doi.org/10.1007/s00705-011-1006-z
7. Trojnar E, Sachsenröder J, Twardziok S, Reetz J, Otto PH, Johne R. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol. 2013; 94(Pt 1):136-142, https://doi.org/10.1099/vir.0.047381-0
8. Degiuseppe JI, Beltramino JC, Millán A, Stupka JA, Parra GI. Complete genome analyses of G4P[6] rotavirus detected in Argentinean children with diarrhoea provides evidence of interspecies transmisión from swine. Clin Microbiol Infect. 2013; 19(8):E367-71, https://doi.org/10.1111/1469-0691.12216
9. Martella V, Banyai K, Matthijnssens J, Buonavoglia C, Ciarlet M. 2009. Zoonotic aspects of rotaviruses. Vet Microbiol. 2010;140(3-4):246-255, https://doi.org/10.1016/j.vetmic.2009.08.028
10. McDonald SM, Matthijnssens J, McAllen JK, Hine E, Overton L, Wang S, et al. Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations. PLoS Pathog. 2009; 5(10):e1000634, https://doi.org/10.1371/journal.ppat.1000634
11. Desselberger U. Genome rearrangements of rotaviruses. Arch Virol Suppl. 1996;12:37-51, https://doi.org/10.1007/978-3-7091-6553-9_5
12. Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol. 2008; 82(7):3204-19, https://doi.org/10.1128/jvi.02257-07
13. Matthijnssens J, Van Ranst M. Genotype constellation and evolution of group A rotaviruses infecting humans. Curr Opin Virol. 2012; 2(4):426-33, https://doi.org/10.1016/j.coviro.2012.04.007
14. Matthijnssens J, Bilcke J, Ciarlet M, Martella V, Bányai K, Rahman M, et al. Rotavirus disease and vaccination: impact on genotype diversity. Future Microbiol. 2009; 4(10):1303-16, https://doi.org/10.2217/fmb.09.96
15. World Health Organization. Rotavirus vaccines: an update. Weekly Epidemiological Record 84, 533 – 540 2009.
16. Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR, Abate H, Breuer T, Clemens SC, et al; Human Rotavirus Vaccine Study Group. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med. 2006;354(1):11-22, https://doi.org/10.1056/nejmoa052434
17. Vesikari T, Matson DO, Dennehy P, Van Damme P, Santosham M, Rodriguez Z, et al; Rotavirus Efficacy and Safety Trial (REST) Study Team. Safety and efficacy of a pentavalent human-bovine (WC3) reassortantrotavirus vaccine. N Engl J Med. 2006 5;354(1):23-33, https://doi.org/10.1056/nejmoa052664
18. Velázquez RF, Linhares AC, Muñoz S, Seron P, Lorca P, DeAntonio R, et al. Efficacy, safety and effectiveness of licensed rotavirus vaccines: a systematic review and meta-analysis for Latin America and the Caribbean. BMC Pediatr. 2017;17(1):14, https://doi.org/10.1186/s12887-016-0771-y
19. de Oliveira LH, Danovaro-Holliday MC, Sanwogou NJ, Ruiz-Matus C, Tambini G, Andrus JK. Progress in the introduction of the rotavirus vaccine in Latin America and the Caribbean: four years of accumulated experience. Pediatr Infect Dis J. 2011; 30(1 Suppl):S61-6, https://doi.org/10.1097/inf.0b013e3181fefdd6
20. Kirkwood CD, Boniface K, Barnes GL, Bishop RF. Distribution of rotavirus genotypes after introduction of rotavirus vaccines, Rotarix® and RotaTeq®, into the National Immunization Program of Australia. Pediatr Infect Dis J. 2011; 30(1 Suppl):S48-53, https://doi.org/10.1097/inf.0b013e3181fefd90
21. Hull JJ, Teel EN, Kerin TK, Freeman MM, Esona MD, Gentsch JR, et al; National Rotavirus Strain Surveillance System. United States rotavirus strain surveillance from 2005 to 2008: genotype prevalence before and after vaccine introduction. Pediatr Infect Dis J. 2011; 30(1 Suppl):S42-7, https://doi.org/10.1097/inf.0b013e3181fefd78
22. Gurgel RQ, Cuevas LE, Vieira SC, Barros VC, Fontes PB, Salustino EF, et al. Predominance of rotavirus P[4]G2 in a vaccinated population, Brasil. Emerg Infect Dis. 2007;13(10):1571-3, https://doi.org/10.3201/eid1310.070412
23. Zeller M, Rahman M, Heylen E, De Coster S, De Vos S, Arijs I, et al. Rotavirus incidence and genotype distribution before and after national rotavirus vaccine introduction in Belgium. Vaccine. 2010 3;28(47):7507-13, https://doi.org/10.1016/j.vaccine.2010.09.004
24. Degiuseppe JI, Stupka JA. First assessment of all-cause acute diarrhoea and rotavirus-confirmed cases following massive vaccination in Argentina. Epidemiol Infect. 2018; 146(15):1948-1954, https://doi.org/10.1017/s0950268818001954
25. Degiuseppe JI, Stupka JA; Argentinean Rotavirus Surveillance Network. Emergence of unusual rotavirus G9P[4] and G8P[8] strains during post vaccination surveillance in Argentina, 2017-2018. Infect Genet Evol. 2021;93:104940, https://doi.org/10.1016/j.meegid.2021.104940
26. Fujii Y, Shimoike T, Takagi H, Murakami K, Todaka-Takai R, Park Y, et al. Amplification of all 11 RNA segments of group A rotaviruses based on reverse transcription polymerase chain reaction. Microbiol Immunol 2012;56(9):630-8, https://doi.org/10.1111/j.1348-0421.2012.00479.x
27. Heiman EM, McDonald SM, Barro M, Taraporewala ZF, Bar-Magen T, Patton JT. Group A human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions. J Virol. 2008; 82(22):11106-16, https://doi.org/10.1128/jvi.01402-08
28. Mwangi PN, Mogotsi MT, Rasebotsa SP, Seheri ML, Mphahlele MJ, Ndze VN, et al. Uncovering the First Atypical DS-1-like G1P[8] Rotavirus Strains That Circulated during Pre-Rotavirus Vaccine Introduction Era in South Africa. Pathogens. 2020; 9(5):391, https://doi.org/10.3390/pathogens9050391
29. Tacharoenmuang R, Komoto S, Guntapong R, Upachai S, Singchai P, I de T, Fukuda S, et al. High prevalence of equine-like G3P[8] rotavirus in children and adults with acute gastroenteritis in Thailand. J Med Virol. 2020;92(2): 174-186, https://doi.org/10.1002/jmv.25591