Ferroptosis, un mecanismo de muerte celular presente en β-talasemia menor
pdf

Palabras clave

ferroptosis
β-talasemia
hierro
estrés oxidativo

Cómo citar

Ferroptosis, un mecanismo de muerte celular presente en β-talasemia menor. (2024). Revista Bioquímica Y Patología Clínica, 89(1). https://doi.org/10.62073/k7g1yk82

Resumen

La ferroptosis es un tipo de muerte celular programada, dependiente de hierro, impulsada por una severa peroxidación lipídica, la cual es consecuencia del metabolismo celular y de una homeostasis redox desequilibrada. La β-talasemia es una anemia hereditaria que cursa con eritropoyesis ineficaz y hemólisis, cuya complicación más importante es la sobrecarga de hierro. Objetivos: Identificar y caracterizar proteínas de la membrana eritrocitaria implicadas en la ferroptosis en pacientes con rasgo β-talasémico (RBT). Materiales y Métodos: Se estudió el proteoma de membranas de eritrocitos desprovistos de hemoglobina de 4 sujetos RBT (grupo RBT) y 4 sujetos control por HPLC acoplado a espectrometría de masa. El análisis e identificación de proteínas se realizó empleando Proteome Discoverer V1.4, y el software Perseus para su cuantificación. Se utilizó la plataforma BlastKOALA para la caracterización funcional de cada proteína. Resultados: Se encontró que las proteínas PCBP 1 y 2 (chaperonas del hierro que favorecen su depósito), P67 y P40 (subunidades catalíticas de la NADPH oxidasa) y ALOX15 (marcadora de peroxidación lipídica), proteínas involucradas en la vía ferroptótica, aumentaron significativamente en el grupo RBT (p<0,05), y su abundancia fue 3,1; 4,4; 3,3; 4,7 y 3 veces mayor que en el grupo control, respectivamente. Conclusiones: La sobreexpresión de proteínas implicadas en la ferroptosis en portadores de β-talasemia avala la participación de este tipo de muerte celular no apoptótica en la fisiopatología de esta anemia hereditaria. 

pdf

Referencias

1. Mettananda S, Higgs DR. Molecular basis and genetic modifiers of thalassemia. Hematol Oncol Clin North Am 2018; 32(2): 177-91, https://doi.org/10.1016/j.hoc.2017.11.003

2. Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev 2018; 32(2): 130-43, https://doi.org/10.1016/j.blre.2017.10.001

3. Terán MM, Mónaco ME, Lazarte SS, Haro C, Ledesma Achem E, Asensio NA, Issé BA. Genetic regulation of redox balance in β-thalassemia trait. Hemoglobin 2020; 44(2): 122-7, https://doi.org/10.1080/03630269.2020.1765794

4. Dreischer P, Duszenko M, Stein J, Wieder T. Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells. 2022;11(3):503, https://doi.org/10.3390/cells11030503

5. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 2018; 25: 486-541, https://doi.org/10.1038/s41418-017-0012-4

6. Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy 2021; 17(9): 2054-81, https://doi.org/10.1080/15548627.2020.1810918

7. Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X, Chen G. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 2023;21(1):327, https://doi.org/10.1186/s12964-023-01267-1

8. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-72, https://doi.org/10.1016/j.cell.2012.03.042

9. Latunde-Dada GO. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 2017 ;1861(8):1893-1900, https://doi.org/10.1016/j.bbagen.2017.05.019

10. Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res 2019; 1866(12): 118535, https://doi.org/10.1016/j.bbamcr.2019.118535

11. Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022;82(12):2215-2227, https://doi.org/10.1016/j.molcel.2022.03.022

12. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156: 317-31, https://doi.org/10.1016/j.cell.2013.12.010

13. Xie Y, Kang R, Klionsky DJ, Tang D. GPX4 in cell death, autophagy, and disease. Autophagy. 2023 ;19(10):2621-2638, https://doi.org/10.1080/15548627.2023.2218764

14. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014; 16(12): 1180-91, https://doi.org/10.1038/ncb3064

15. Zhao Y, Huang Z, Peng H. Molecular mechanisms of ferroptosis and its roles in hematologic malignancies. Front Oncol. 2021, 27;11: 743006, https://doi.org/10.3389/fonc.2021.743006

16. Lazarte SS, Mónaco ME, Haro AC, Jiménez CL, Ledesma Achem ME, Issé BA. Molecular characterization and phenotyping study of β- thalassemia in Tucumán, Argentina. Hemoglobin 2014; 38 (6): 394-401, https://doi.org/10.3109/03630269.2014.968784

17. Heinrich V, Ritchie K, Mohandas N, Evans E. Elastic thickness compressibilty of the red cell membrane. Biophys J 2001; 81(3): 1452-63, https://doi.org/10.1016/S0006-3495(01)75800-6

18. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428(4): 726-31, https://doi.org/10.1016/j.jmb.2015.11.006

19. Katsantoni E. Omics studies in hemoglobinopathies. Mol Diagn Ther 2019; 23(2): 223-34, https://doi.org/10.1007/s40291-019-00386-1

20. Zhou G, Zhang H, Lin A, Wu Z, Li T, Zhang X, et al. Multi-Omics analysis in β-thalassemia using an hbb gene-knockout human erythroid progenitor cell model. Int J Mol Sci 2022; 23(5): 2807, https://doi.org/10.3390/ijms23052807

21. Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73: 28-45, https://doi.org/10.1016/j.plipres.2018.11.001

22. Shintoku R, Takigawa Y, Yamada K, Kubota C, Yoshimoto Y, Takeuchi T, et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci 2017; 108(11): 2187-94, https://doi.org/10.1111/cas.13380

23. Cai W, Liu L, Shi X, Liu Y, Wang J, Fang X, et al. Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis. Circulation 2023; ;147(19):1444-1460, https://doi.org/10.1161/CIRCULATIONAHA.122.060257

24. Bayır H, Anthonymuthu TS, Tyurina YY, Patel SJ, Amoscato AA, Lamade AM, et al. Achieving life through death: redox biology of lipid peroxidation in ferroptosis. Cell Chem Biol 2020; 27(4): 387-408, https://doi.org/10.1016/j.chembiol.2020.03.014

25. Protchenko O, Baratz E, Jadhav S, Li F, Shakoury-Elizeh M, Gavrilova O, et al. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis. Hepatology 2021, 73: 1176-93, https://doi.org/10.1002/hep.31328

26. Yanatori I, Richardson DR, Imada K, Kishi F. Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2. J Biol Chem 2016, 291: 17303-18, https://doi.org/10.1074/jbc.M116.721936

27. Lee J, You JH, Roh JL. Poly(rC)-binding protein 1 represses ferritinophagy-mediated ferroptosis in head and neck cancer. Redox Biol 2022; 51: 102276, https://doi.org/10.1016/j.redox.2022.102276

28. Zhang J, Ding N, Xin W, Yang X, Wang F. Quantitative proteomics reveals that a prognostic signature of the endometrium of the polycystic ovary syndrome women based on ferroptosis proteins. Front Endocrinol (Lausanne) 2022; 13: 871945, https://doi.org/10.3389/fendo.2022.871945

29. Joshi S, Khan SR. NADPH oxidase: a therapeutic target for hyperoxaluria-induced oxidative stress - an update. Future Med Chem 2019;11(23): 2975-8, https://doi.org/10.4155/fmc-2019-0275

30. Chocry M, Leloup L. The NADPH oxidase family and its inhibitors. Antioxid Redox Signal 2020; 33(5): 332-53, https://doi.org/10.1089/ars.2019.7915

31. Bou-Fakhredin R, Dia B, Ghadieh HE, Rivella S, Cappellini MD, Eid AA, Taher AT. CYP450 mediates reactive oxygen species production in a mouse model of β-thalassemia through an increase in 20-HETE activity. Int J Mol Sci 2021; 22(3): 1106, https://doi.org/10.3390/ijms22031106

32. Yao W, Liao H, Pang M, Pan L, Guan Y, Huang X, et al. Inhibition of the NADPH oxidase pathway reduces ferroptosis during septic renal injury in diabetic mice. Oxid Med Cell Longev 2022: 1193734, https://doi.org/10.1155/2022/1193734

33. Kittivorapart J, Crew VK, Wilson MC, Heesom KJ, Siritanaratkul N, ToyeAM. Quantitative proteomics of plasma vesicles identify novel biomarkers for hemoglobin E/β-thalassemic patients. Blood Adv 2018; 2(2): 95-104, https://doi.org/10.1182/bloodadvances.2017011726

34. Li N, An P, Wang J, Zhang T, Qing X, Wu B, et al. Plasma proteome profiling combined with clinical and genetic features reveals the pathophysiological characteristics of β-thalassemia. iScience 2022; 25(4): 104091, https://doi.org/10.1016/j.isci.2022.104091

35. Tzounakas VL, Anastasiadi AT, Dzieciatkowska M, Karadimas DG, Stamoulis K, Papassideri IS, et al. Proteome of stored RBC membrane and vesicles from heterozygous beta thalassemia donors. Int J Mol Sci 2021; 22(7): 3369, https://doi.org/10.3390/ijms22073369

36. Arlet JB, Ribeil JA, Guillem F, Negre O, Hazoume A, Marcion G, et al. HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature 2014; 514(7521): 242-6, https://doi.org/10.1038/nature13614

37. Leecharoenkiat A, Wannatung T, Lithanatudom P, Svasti S, Fucharoen S, Chokchaichamnankit D, et al. Increased oxidative metabolism is associated with erythroid precursor expansion in β0-thalassaemia/Hb E disease. Blood Cells Mol Dis 2011; 47(3): 143-57, https://doi.org/10.1016/j.bcmd.2011.06.005